Closed form solution of the diffusion transport equation in multiple scattering
نویسندگان
چکیده
منابع مشابه
A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملSolution of a sum form equation in the two dimensional closed domain case ∗
In this note we give the solution of the sum form functional equation
متن کاملA closed form solution for pollutant dispersion in atmosphere considering nonlocal closure of the turbulent diffusion
Atmospheric air pollution turbulent fluxes can be assumed proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Moreover, large eddies are able to mix scalar quantities in a manner that is counter to the local gradient. In this work we present an analytical solution of the three-dimensional steady stat...
متن کاملExact Closed-Form Solution for Vibration Analysis of Truncated Conical and Tapered Beams Carrying Multiple Concentrated Masses
In this paper, an exact closed-form solution is presented for free vibration analysis of Euler-Bernoulli conical and tapered beams carrying any desired number of attached masses. The concentrated masses are modeled by Dirac’s delta functions which creates no need for implementation of compatibility conditions. The proposed technique explicitly provides frequency equation and corresponding mode ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2001
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(01)00068-4